Twisted Edwards Curves Revisited

نویسندگان

  • Hüseyin Hisil
  • Kenneth Koon-Ho Wong
  • Gary Carter
  • Ed Dawson
چکیده

This paper introduces fast algorithms for performing group operations on twisted Edwards curves, pushing the recent speed limits of Elliptic Curve Cryptography (ECC) forward in a wide range of applications. Notably, the new addition algorithm uses 8M for suitably selected curve constants. In comparison, the fastest point addition algorithms for (twisted) Edwards curves stated in the literature use 9M + 1S. It is also shown that the new addition algorithm can be implemented with four processors dropping the effective cost to 2M. This implies an effective speed increase by the full factor of 4 over the sequential case. Our results allow faster implementation of elliptic curve scalar multiplication. In addition, the new point addition algorithm can be used to provide a natural protection from side channel attacks based on simple power analysis (SPA).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted Edwards Curves

This paper introduces “twisted Edwards curves,” a generalization of the recently introduced Edwards curves; shows that twisted Edwards curves include more curves over finite fields, and in particular every elliptic curve in Montgomery form; shows how to cover even more curves via isogenies; presents fast explicit formulas for twisted Edwards curves in projective and inverted coordinates; and sh...

متن کامل

Pairing Computation on Edwards Curves with High-Degree Twists

In this paper, we propose an elaborate geometry approach to explain the group law on twisted Edwards curves which are seen as the intersection of quadric surfaces in place. Using the geometric interpretation of the group law we obtain the Miller function for Tate pairing computation on twisted Edwards curves. Then we present the explicit formulae for pairing computation on twisted Edwards curve...

متن کامل

Division Polynomials for Twisted Edwards Curves

This paper presents division polynomials for twisted Edwards curves. Their chief property is that they characterise the n-torsion points of a given twisted Edwards curve. We also present results concerning the coefficients of these polynomials, which may aid computation.

متن کامل

Faster point scalar multiplication on NIST elliptic curves over GF(p) using (twisted) Edwards curves over GF(p³)

In this paper we present a new method for fast scalar multiplication on el-liptic curves over GF (p) in FPGA using Edwards and twisted Edwards curves over GF (p 3). The presented solution works for curves with prime group order (for example for all NIST curves over GF (p)). It is possible because of using 2-isogenous twisted Edwards curves over GF (p 3) instead of using short Weierstrass curves...

متن کامل

Double-base scalar multiplication revisited

This paper reduces the number of field multiplications required for scalar multiplication on conservative elliptic curves. For an average 256-bit integer n, this paper’s multiply-by-n algorithm takes just 7.47M per bit on twisted Edwards curves −x + y = 1 + dxy with small d. The previous record, 7.62M per bit, was unbeaten for seven years. Unlike previous record-setting algorithms, this paper’s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008